AI Vision#

Introduction#

The AI Vision Sensor enables a robot to detect and track visual information in its environment. By identifying objects, colors, and patterns, the sensor allows the robot to analyze its surroundings and respond to what it sees.

This page uses AIVision1 as the example AI Vision Sensor name. Color Signature objects (such as redBox) and Color Code objects (such as redBlue) are also used in examples. Replace these names with your own configured names as needed.

Below is a list of all methods:

Getters

  • takeSnapshot — Captures data for a specific Color Signature or Color Code.

  • objectCount — Returns the number of detected objects as an integer.

  • largestObject — Immediately select the largest object from the snapshot.

  • installed — Whether the AI Vision Sensor is connected to the V5 Brain.

Properties — Object data returned from takeSnapshot.

  • .exists — Whether the object exists in the current detection as a Boolean.

  • .width — Width of the detected object in pixels.

  • .height — Height of the detected object in pixels.

  • .centerX — X position of the object’s center in pixels.

  • .centerY — Y position of the object’s center in pixels.

  • .angle — Orientation of the Color Code in degrees.

  • .originX — X position of the object’s top-left corner in pixels.

  • .originY — Y position of the object’s top-left corner in pixels.

  • .id — Classification ID or AprilTag ID of the object.

  • .score — Confidence score for AI Classifications.

Constructors — Manually initialize and configure the sensors.

takeSnapshot#

takeSnapshot captures an image from the AI Vision Sensor, processes it based on the signature, and updates the objects array. This method can also limit the amount of objects captured in the snapshot.

Color Signatures and Color Codes must be configured first in the Vision Utility before they can be used with this method.

The objects array stores objects ordered from largest to smallest by width, starting at index 0. Each object’s properties can be accessed using its index. objects is an empty array if no matching objects are detected.

Default Usage:
AIVision1.takeSnapshot(signature)

Overloads:
AIVision1.takeSnapshot(signature, count)

Parameters

Description

signature

The signature to retrieve data for.

  • Color Signatures or Color Codes — The name of the AI Vision Sensor, two underscores, and then the Color Signature’s or Color Code’s name.For example: AIVision1__redBox.
  • aivision::ALL_AIOBJS — Cubes, Rings, and Buckyballs.
  • aivision::ALL_TAGS — All AprilTag IDs.

count

Optional. Sets the maximum number of objects that can be returned from 1 to 24 (default: 8).

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Move forward if an object is detected
  while (true) {
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);
    if (AIVision1.objects[0].exists) {
      Drivetrain.driveFor(forward, 50, mm);
    }
    wait(50, msec);
  }
}

AI Classifications#

The AI Vision Sensor can detect different objects under certain AI Classifications. Depending on the AI Classification model selected when configuring the AI Vision Sensor in the Devices window, different objects can be detected. The currently available models are:

Classroom Elements

ID Number

AI Classification

0

blueBall

1

greenBall

2

redBall

3

blueRing

4

greenRing

5

redRing

6

blueCube

7

greenCube

8

redCube

V5RC High Stakes

ID Number

AI Classification

0

mobileGoal

1

redRing

2

blueRing

V5RC Push Back

ID Number

AI Classification

0

blueBlock

1

redBlock

Color Signatures#

A color signature is a unique color that the AI Vision Sensor can recognize. These signatures allow the AI Vision Sensor to detect and track objects based on their color. Once a color signature is configured, the sensor can identify objects with that specific color in its field of view. Color signatures are used with takeSnapshot to process and detect colored objects in real-time.

In order to use a configured color signature in a project, its name must be the name of the sensor, two underscores, and then the color signature’s name. For example: AIVision1__redBox.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();

  while (true) {
    // Display when the color signature is detected
    Brain.Screen.setCursor(1, 1);
    Brain.Screen.clearLine(1);
    // Change to any configured Color Signature
    AIVision1.takeSnapshot(AIVision1__redBox);
    if (AIVision1.objects[0].exists) {
      Brain.Screen.print("Color detected!");
    }
    wait(50, msec);
  }
}

Color Codes#

A color code is a structured pattern made up of color signatures arranged in a specific order. These codes allow the AI Vision Sensor to recognize predefined patterns of colors. Color codes are useful for identifying complex objects or creating unique markers for autonomous navigation.

To use a configured color code in a project, its name must be passed as a string in the format: the AI Vision Sensor’s name, followed by two underscores, and then the color code’s name. For example: AIVision1__redBlue.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();

  while (true) {
    // Display when the color code is detected
    Brain.Screen.setCursor(1, 1);
    Brain.Screen.clearLine(1);
    // Change to any configured Color Code
    AIVision1.takeSnapshot(AIVision1__redBlue);
    if (AIVision1.objects[0].exists) {
      Brain.Screen.print("Code detected!");
    }
    wait(50, msec);
  }
}

objectCount#

objectCount returns the number of items inside the objects array as an integer.

Default Usage:
AIVision1.objectCount

Parameters

Description

This method has no parameters.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Display the number of detected objects
  while (true) {
    Brain.Screen.setCursor(1, 1);
    Brain.Screen.clearLine(1);
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);
    if (AIVision1.objects[0].exists) {
      Brain.Screen.print("%d", AIVision1.objectCount);
    }
    wait(50, msec);
  }
}

largestObject#

largestObject retrieves the largest detected object from the objects array.

This method can be used to always get the largest object from objects without specifying an index.

Default Usage:
AIVision1.largestObject

Parameters

Description

This method has no parameters.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Display the closest AprilTag's ID
  while (true) {
    Brain.Screen.setCursor(1, 1);
    Brain.Screen.clearLine(1);
    AIVision1.takeSnapshot(aivision::ALL_TAGS);
    if (AIVision1.objects[0].exists) {
      Brain.Screen.print("%d", AIVision1.largestObject.id);
    }
    wait(50, msec);
  }
}

installed#

installed returns an integer indicating whether the AI Vision Sensor is currently connected to the V5 Brain.

  • 1 — The AI Vision Sensor is connected to the V5 Brain.

  • 0 — The AI Vision Sensor is not connected to the V5 Brain.

Parameters

Description

This method has no parameters.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Display a message if the AI Vision Sensor is detected
  if (AIVision1.installed()){
    Brain.Screen.print("Installed!");
  }
}

objects#

objects returns an array of detected object properties. Use the array to access specific property values of individual objects.

Default Usage:
AIVision1.objects

Properties#

There are ten properties that are included with each object stored in the objects array after takeSnapshot is used.

Some property values are based off of the detected object’s position in the AI Vision Sensor’s view at the time that takeSnapshot was used. The AI Vision Sensor has a resolution of 320 by 240 pixels.

.exists#

.exists returns an integer indicating if the index exists in the objects array or not.

  • 1: The index exists.

  • 0: The index does not exist.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Move forward if an object is detected
  while (true) {
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);
    if (AIVision1.objects[0].exists) {
      Drivetrain.driveFor(forward, 50, mm);
    }
    wait(50, msec);
  }
}

.width#

.width returns the width of the detected object in pixels, which is an integer between 1 and 320.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Approach an object until it's at least 100 pixels wide
  while (true) {
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);

    if (AIVision1.objects[0].exists) {
      if (AIVision1.objects[0].width < 100) {
        Drivetrain.drive(forward);
      } else {
        Drivetrain.stop();
      }
    } else {
      Drivetrain.stop();
    }
    wait(50, msec);
  }
}

.height#

.height returns the height of the detected object in pixels, which is an integer between 1 and 240.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Approach an object until it's at least 90 pixels tall
  while (true) {
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);

    if (AIVision1.objects[0].exists) {
      if (AIVision1.objects[0].height < 90) {
        Drivetrain.drive(forward);
      } else {
        Drivetrain.stop();
      }
    } else {
      Drivetrain.stop();
    }
    wait(50, msec);
  }
}

.centerX#

.centerX returns the x-coordinate of the detected object’s center in pixels, which is an integer between 0 and 320.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Turn until an object is directly in front of the sensor
  Drivetrain.setTurnVelocity(10, percent);
  Drivetrain.turn(right);
  while (true) {
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);

    if (AIVision1.objects[0].exists) {
      if (AIVision1.objects[0].centerX > 140 && AIVision1.objects[0].centerX < 180) {
        Drivetrain.stop();
      }
    }

    wait(10, msec);
  }
}

.centerY#

.centerY returns the y-coordinate of the detected object’s center in pixels, which is an integer between 0 and 240.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Approach an object until it's close to the sensor
  while (true) {
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);

    if (AIVision1.objects[0].exists) {
      if (AIVision1.objects[0].centerY < 150) {
        Drivetrain.drive(forward);
      } else {
        Drivetrain.stop();
      }
    } else {
      Drivetrain.stop();
    }
    wait(50, msec);
  }
}

.angle#

.angle returns the orientation of the detected color code or AprilTag ID in degrees, which is a double between 0 and 360.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Turn left or right depending on how a configured
  // Color Code is rotated
  while (true) {
    AIVision1.takeSnapshot(AIVision1__redBlue);
    if (AIVision1.objects[0].exists) {
      if (AIVision1.objects[0].angle > 50 && AIVision1.objects[0].angle < 100) {
        Drivetrain.turn(right);
      }
      else if (AIVision1.objects[0].angle > 270 && AIVision1.objects[0].angle < 330) {
        Drivetrain.turn(left);
      }
      else {
        Drivetrain.stop();
      }
    } else {
      Drivetrain.stop();
    }
    wait(50, msec);
  }
}

.originX#

.originX returns the x-coordinate of the top-left corner of the detected object’s bounding box in pixels, which is an integer between 0 and 320.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Display if an object is to the left or the right
  while (true) {
    Brain.Screen.clearScreen();
    Brain.Screen.setCursor(1, 1);
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);
    if (AIVision1.objects[0].exists) {
      if (AIVision1.objects[0].originX < 120) {
        Brain.Screen.print("To the left!");
      } else {
        Brain.Screen.print("To the right!");
      }
    } else {
      Brain.Screen.print("No objects");
    }
    wait(100, msec);
  }
}

.originY#

.originY returns the y-coordinate of the top-left corner of the detected object’s bounding box in pixels, which is an integer between 0 and 240.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Display if an object is close or far
  while (true) {
    Brain.Screen.clearScreen();
    Brain.Screen.setCursor(1, 1);
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);
    if (AIVision1.objects[0].exists) {
      if (AIVision1.objects[0].originY < 110) {
        Brain.Screen.print("Close");
      } else {
        Brain.Screen.print("Far");
      }
    }
    wait(100, msec);
  }
}

.id#

.id returns the ID of the detected AI Classification or AprilTag ID as an integer.

For AI Classifications, see the AI Classification tables for the corresponding IDs.

For an AprilTag ID, the .id property represents the detected AprilTag’s ID number in the range of 0 to 36. For an AI Classification, the ID corresponds to the predefined ID as shown below.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Move forward when AprilTag ID 1 is detected
  while (true) {
    AIVision1.takeSnapshot(aivision::ALL_TAGS);
    if (AIVision1.objects[0].exists) {
      if (AIVision1.objects[0].id == 1) {
        Drivetrain.drive(forward);
      }
    } else {
      Drivetrain.stop();
    }
    wait(50, msec);
  }
}

.score#

.score returns the confidence score of the detected AI Classification as an integer between 1 and 100.

int main() {
  // Initializing Robot Configuration. DO NOT REMOVE!
  vexcodeInit();
  // Display if a score is confident
  while (true) {
    AIVision1.takeSnapshot(aivision::ALL_AIOBJS);

    if (AIVision1.objects[0].exists) {
      Brain.screen.clearScreen();
      Brain.screen.setCursor(1, 1);

      if (AIVision1.objects[0].score > 95) {
        Brain.Screen.print("Confident");
      } else {
        Brain.Screen.print("Not confident");
      }
    }

    wait(50, msec);
  }
}

Constructors#

Constructors are used to manually create aivision, aivision::colordesc, and aivision::codedesc objects, which are necessary for configuring the AI Vision Sensor outside of VEXcode.

aivision#

aivision creates an AI Vision Sensor.

Default Usage:
aivision(port, sigs)

Parameters

Description

port

Which Smart Port the AI Vision Sensor is connected to, from 1 to 21.

sigs

Optional. The name of one or more signatures:

// Create the Color Signatures
aivision::colordesc AIVision1__greenBox(1, 85, 149, 46, 23, 0.23);
aivision::colordesc AIVision1__blueBox(2, 77, 135, 125, 27, 0.29);

// Create a Color Code
aivision::codedesc AIVision1__greenBlue(1, AIVision1__greenBox, AIVision1__blueBox);

/*
Create a Vision Sensor with the following values:
port: Port 1
sigs: greenBlue and AI Classifications
*/
aivision AIVision1(PORT11, AIVision1__greenBlue, aivision::ALL_AIOBJS);

aivision::colordesc#

aivision::colordesc creates a color signature. Up to seven different color signatures can be stored on an AI Vision Sensor at once.

Default Usage:
aivision::colordesc(index, red, green, blue, hangle, hdsat)

Parameter

Description

index

The colordesc object’s index, from 1 - 7.
Note: Creating two colordesc objects with the same index number will cause the second created object to override the first.

red

The red value of the color from 0 to 255.

green

The green value of the color from 0 to 255.

blue

The blue value of the color from 0 to 255.

hangle

The allowable hue variance as a span of degrees on the color wheel (1–40). Higher values permit a wider rotational deviation from the base hue.

hdsat

The allowable saturation deviation, from 0.10 to 1.00. This value represents the fraction of the full saturation range the color may shift within (e.g., 0.10 = ±10% saturation)

/*
Create a Color Signature with the following values:
index: 1
red: 81
green: 149
blue: 44
hangle: 17
hsat: 0.23
*/

aivision::colordesc AIVision1__greenBox(1, 81, 149, 44, 17, 0.23);

aivision::codedesc#

aivision::codedesc creates a color code. It requires at least two already created aivision::colordesc in order to be used. Up to eight different color codes can be stored on an AI Vision Sensor at once.

Default Usage:
aivision::codedesc(sigs)

Parameters

Description

sigs

Two or more previously created aivision::colordesc, named using the format AIVisionSensor__colorSignature (for example, AIVision1__blueBox), separated by commas. A color code can include up to five different color signatures.

// Create the Color Signatures
aivision::colordesc AIVision1__greenBox(1, 85, 149, 46, 23, 0.23);
aivision::colordesc AIVision1__blueBox(2, 77, 135, 125, 27, 0.29);

// Create a Color Code with the Color Signatures
aivision::codedesc AIVision1__greenBlue(1, AIVision1__greenBox, AIVision1__blueBox);